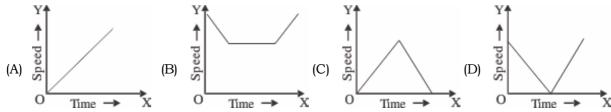


Studymate Foundation Paper

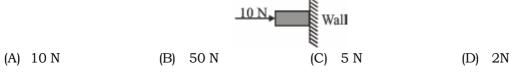
Date: 20/01/2019 Duration: 90 Min. Max. Marks: 90

Physics, Chemistry & Mathematics/Biology (Set-1)

CLASS XI


General Instructions:

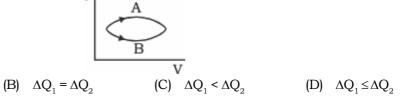
- 1. All questions are compulsory.
- 2. Each question is allotted ONE mark for each correct response.
- 3. No deduction from the total score will be made if no response is indicated for the question in the answer sheet.
- **4.** There is only **ONE** correct response for each question. Filling up **MORE THAN ONE** response in each question will be treated as wrong response.
- 5. The paper contains 90 questions (Physics 1-30, Chemistry 31-60, Mathematics 61-90 / Biology 61-90).
- **6. NON-MEDICAL** students attempt Physics, Chemistry and Mathematics and **MEDICAL** Students attempt Physics, Chemistry and Biology.
- 7. Use of calculators is not allowed.


(A) $\Delta Q_1 > \Delta Q_2$

Physics

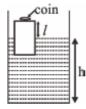
1. Four speed-time graphs are given below. Which graph represents the case of a trolley decelerating to a constant speed and then accelerating uniformly.

2. A horizontal force of 10 N is necessary to just hold a block stationary against a wall. The coefficient of friction between the block and wall is 0.2. The weight of the block is



3. The escape velocity from a spherical planet is v_0 . What is the escape velocity corresponding to another planet of twice the radius and half the mean density.

(A)
$$\sqrt{2} \ v_0$$
 (B) $\frac{v_0}{\sqrt{2}}$ (C) v_0 (D) $4 \ v_0$

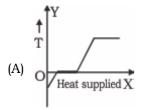

4. Figure shows two processes A and B on a system. Let ΔQ_1 and ΔQ_2 be the heat given to the system in processes A and B respectively. Then

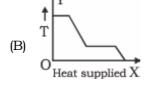
-(1)-

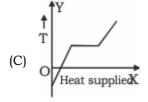
- **5.** Angular momentum vector \vec{l} for a particle under projectile motion about the point of projection is
 - (A) constant in magnitude and direction both
 - (B) constant in direction, variable in magnitude
 - (C) constant in magnitude, variable in direction
 - (D) variable in magnitude and direction both
- **6.** The units for $\frac{G}{g}$ will be:
 - (A) m^2/kg
- (B) kg/m
- (C) kg/m^2
- (D) m/kg
- **7.** A wooden block with a coin placed on its top, floats in water as shown in figure. The distances *l* and h are shown there. After some time, the coin falls into the water. Then.

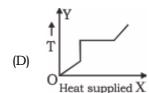
- (A) l decreases and h increases
- (B) *l* increases and h decreases

(C) both l and h decreases

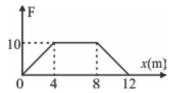

- (D) both l and h increases
- **8.** For a projectile thrown into space with a speed v, the horizontal range is $\frac{\sqrt{3}v^2}{2g}$. The vertical


range is $\frac{v^2}{8g}$. The angle which the projectile makes with the horizontal initially is


- (A) 15°
- (B) 30°
- (C) 45°
- (D) 60°
- **9.** A body is moved along a straight line by a machine delivering constant power. The distance moved by the body in time t is proportional to
 - (A) $t^{1/2}$
- (B) $t^{3/4}$
- (C) $t^{3/2}$
- $(D) + \frac{1}{2}$
- **10.** A thin rod of length L and mass M is bent at the middle point O at an angle of 60°, as shown in figure. The moment of inertia of the rod about an axis passing through O and perpendicular to the plane of the rod will be

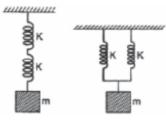


- (A) $\frac{ML^2}{6}$
- (B) $\frac{ML^2}{12}$
- (C) $\frac{\text{ML}^2}{24}$
- (D) $\frac{ML^2}{3}$
- **11.** A block of ice at –10°C is slowly heated and converted to steam at 100°C. Which of the following curve represents the phenomenon qualitatively?



12. A particle of mass 0.1 kg is subjected to a force which varies with distance as shown in figure. If it starts its journey from rest at x = 0, its velocity at x = 12 m is

- (A) 0 m/s
- (B) $20\sqrt{2} \text{ m/s}$
- (C) $20\sqrt{3}$ m/s


13. A stone is dropped into a well. If the depth of water below the top be h and velocity of sound in air be v, then the time after which splash of sound is heard is

- (A) $\sqrt{\frac{2h}{g}} + \frac{h}{v}$
- (B) $\sqrt{\frac{2h}{g}} \frac{h}{v}$ (C) $\sqrt{\frac{2h}{g}}$ (D) $\sqrt{\frac{2h}{g}} \times \frac{h}{v}$

14. A man can swim in still water with the velocity of 5 km/h when the water of the river is flowing with the velocity of 3 km/h. In order to cross the river in shortest distance, the angle θ with the bank of the river will be

- (A) $\theta = \cos^{-1}(5/3)$ (B) $\theta = \cos^{-1}\left(-\frac{3}{5}\right)$ (C) $\theta = \pi/2$ (D) $\theta = \cos^{-1}(-5/3)$

15. Two identical springs, each of spring constant K, are connected in series and parallel as shown in figure. A mass m is suspended from them. The ratio of their frequencies of vertical oscillations will be

- (A) 2:1
- (B) 1:1
- (C) 1:2
- (D) 4:1

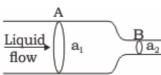
16. A particle moves in a circular path with a uniform speed. Its motion is

(A) periodic

(B) oscillatory

(C) simple harmonic

(D) angular simple harmonic

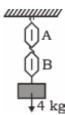

17. What is the % error in measurement of T' of a pendulum if maximum errors in measurements of length and 'g' are 2% and 4% respectively?

- (A) 6%
- (B) 3%
- (C) 4%
- (D) 5%

18. The ratio of diameters of two wires of same material is n : 1. The length of each wire is 4m. On applying the same load, the increase in length of thin wire will be (n > 1)... to the length of thee thick wire.

- (A) n^2 times
- (B) n times
- (C) 2n times
- (D) (2n + 1) times

19. A liquid flows steadily from left to right in a tube of uniform cross-section. If a, and a, are the cross-sectional areas of portions A and B of the tube, the ratio of velocities of liquid at A and B is given by



- (A) $\left(\frac{a_1}{a_2}\right)^{\overline{2}}$

20.	A particle performs SHM along a path, $2A = 20$ cm (where A is the amplitude). If maximum velocity is 1 m/s, the time period of the particle is									
	(A)	$2\pi\text{sec}$	(B)	$\pi/2 \sec$	(C)	$\pi/5 \sec$	(D)	5π sec		
21.	con		end o	of the spring is fixe				rtical spring of force uilibrium, the lower		
	(A)	Remain undisturb	ed							
	(B)	Move up through a	dist	ance $\frac{mg}{k}$ and com	ne to	rest				
	(C)	Undergo vertical S	HM v	with a time period	of 2τ	$\sqrt[3]{rac{m_1}{k}}$				
	(D)	Under vertical SHI	M wit	h a time period 2τ	$\tau \sqrt{\frac{(m)}{m}}$	$\frac{1+m_2)}{k}$				
22.	In s	stationary wave								
	(A)	At node, strain is	maxi	mum	(B)	At node, velocity	is m	aximum		
	(C) At antinode, strain is maximum				(D)	At antinode, velocity is minimum				
23.	The	e equation of progre	ssive	e wave is $y = 0.01$ s	$\sin\left(1\right)$	$100\pi t + \frac{10\pi x}{3} $ wh	ere x	is in meter and t is		
		second. The value o								
	(A)	550 Hz	(B)	720 Hz	(C)	310 Hz	(D)	None of these		
24.	is p		cen	tre of mass throu	gh a	distance d, by wl	nat d	2. If the first particle listance should the osition?		
	(A)	$\frac{m_2}{m_1}d$	(B)	$\frac{m_1}{m_2}d$	(C)	$\frac{m_1 m_2}{d}$	(D)	$\frac{(m_1 + m_2)}{d}$		
25.		on zero external for centre of mass are		=	_	_		the acceleration of that		
	(A)	$v_0 = 0, a_0 = 0$	(B)	$v_0 = 0, a_0 \neq 0$	(C)	$v \neq 0$, $a \neq 0$	(D)	Both (b) and (c)		
26.	Wh	en a particle moves	in a	circle with a unif	orm	speed				
	(A)	Its velocity and acc	celera	ation are both con	stan	t				
	(B)	Its velocity is cons	tant	but the acceleration	on cl	nanges				
	(C)	Its acceleration is	cons	tant but the veloci	ity cł	nanges				
	(D)	Its velocity and acc	celera	ation both change						
27.	The	heart is pumping l	olood	l at x kg per unit t	ime,	with constant velo	city	v. The force needed		
	(A)	x v	(B)	$v\frac{dx}{dt}$	(C)	$x \frac{dv}{dt}$	(D)	Zero		

28. A block of mass 4 kg is suspended through two light spring balance A and B. Then A and B will read respectively, as shown in the figure.

- (A) 4 kg and zero kg
- (B) Zero kg and 4 kg (C) 4 kg and 4 kg
- (D) 2 kg and 2 kg
- **29.** For a given velocity, a projectile has the same range R for two angles of projection. If t_1 and t_2 are the time of flights in the two cases, then
 - (A) $t_1t_2 \propto \frac{1}{R^2}$ (B) $t_1t_2 \propto \frac{1}{R}$ (C) $t_1 t_2 \propto R$ (D) $t_1 t_2 \propto R^2$

- **30.** The density of water is equal to
 - (A) $10^{-3} \text{ kg m}^{-3}$
- (B) 10 kg m^{-3} (C) 10^3 kg m^{-3} (D) 10^6 kg m^{-3}

Chemistry

31. E⁰ values of some redox couple are given below. On the basis of these values, choose the correct option.

 E^{0} values: $Br_{2}/Br^{-} = +1.09$; $Ag^{+}/Ag = +0.80$; $Cu^{2+}/Cu = +0.34$; $I_{2}/I^{-} = +0.54$

(A) Cu will reduce Br

(B) Cu will reduce Ag

(C) Cu will reduce I-

- (D) Cu will reduce Br_a
- 32. Which of the following arragements represent increasing oxidation number of the central atom?
 - (A) CrO₂, ClO₃, CrO₄²⁻, MnO₄
- (B) ClO_3^- , CrO_4^{2-} , MnO_4^- , CrO_2^-
- (C) CrO₂, ClO₃, MnO₄, CrO₄²
- (D) CrO_4^{2-} , MnO_4^- , CrO_2^- , ClO_3^-
- 33. Metal hydride are ionic, covalent or molecular in nature. Among LiH, NaH, KH, RbH, CsH, the correct order of increasing ionic character is
 - (A) RbH < KH < CsH < NaH < LiH
- (B) CsH < RbH < KH < NaH < LiH
- (C) LiH < KH < NaH < CsH < RbH
- (D) LiH < NaH < KH < RbH < CsH

- 34. Hydrogen peroxide is
 - (A) an oxidising agent

- (B) a reducing agent
- (C) both an oxidising and a reducing agent
- (D) neither oxidising nor reducing agent
- 35. The reducing power of a metal depends on various factors. Suggest the factor which makes Li, the strongest reducing agent in aqueous solution.
 - (A) Sublimation enthalpy

(B) Ionisation enthalpy

(C) Hydration enthalpy

- (D) Electron gain enthalpy
- 36. A substance which gives brick red flame and breaks down on heating to give oxygen and a brown gas is
 - (A) magnesium nitrate

(B) calcium nitrate

(C) barium nitrate

(D) strontium nitrate

37. Boric acid is an acid because its molecule

	(A) contains replaceal	ble H ⁺ ion	(B)	gives up a proton		
	(C) accepts OH- from	water releasing proton	(D)	combine with pro	tons	from water molecule
38.	The element which ex measuring high temp	ists in liquid state for a erature is	wide	range of tempera	ture a	and can be used for
	(A) B	(B) A1	(C)	Ga	(D)	In
39.	Which of the following	g is the correct IUPAC na	ame?	•		
	(A) 3-Ethyl-4,4-dimetl	hylheptane	(B)	4,4-Dimethyl-3-e	thylh	ieptane
	(C) 5-Ethyl-4,4-dimetl	hylheptane	(D)	4,4-Bis(methyl)-3	8-ethy	lheptane
40.	In the hydrocarbon					
	CH_3 $-CH$ $=$ CH $-CH_2$	-C = CH				
	The state of hybridisat	tion of carbon 1, 3 and 5	are	in the following se	equer	ice.
	(A) sp, sp^2, sp^3	(B) sp^3, sp^2, sp	(C)	sp^2 , sp , sp^3	(D)	sp, sp^3, sp^2
41.	Ionic species are stabilithe most stable?	lised by the dispersal of	char	ge, which of the fol	lowir	ng carboxylate ion is
	O (A) CH ₃ —C—O-	(B) $C1-CH_2-C-O^-$	(C)	$\begin{array}{c} & & O \\ \parallel & \parallel \\ F -\!$	(D)	F CH—C—O-
42.	Which of the following	reactions of methane is	s inc	omplete combustic	on:	
	(A) $2CH_4(g) + O_2(g) -$	Cu/523 k/100 atm → 2CH ₃ OH	(1)			
	(B) $CH_4(g) + O_2(g)$	$Mo_2O_3 \rightarrow HCHO(1) + H_2O(1)$)			
	(C) $CH_4(g) + O_2(g)$,			
	(D) $CH_4(g) + 2O_2(g) -$	2 ()				
43.	() () () ()	oit geometrical isomeris	m is			
10.	(A) Propene	(B) 2-Methylpropene			(D)	2-Methylbut-2-ene
44.	In the reaction below,	· ,	(0)	But I one	(2)	2 mediyisat 2 ene
	Neopentyl alcohol — H					
	(A) 2-Methylpentane	, A	(B)	2-Methylpent-2-6	ene	
	(C) 2-Methylbut-2-ene	2	(D)	Neopentane		
45.	. ,	g gases is not a greenhou	` ,	-		
	(A) CO	(B) O ₃		CH ₄	(D)	H ₂ O vapour
46.	Which of the following	statements about photo		7	ıg?	-
	(A) It has high concer	ntration of oxidising age	nts.			
	(B) It has low concent	ration of oxidising agen	t.			
	(C) It can be controlled	d by controlling the rele	ase o	of NO ₂ , hydrocarbo	n, ozo	one, etc.
	(D) Plantation of some	e plants like pinus helps	s in c	ontrolling photoch	nemic	eal smog.
47.	If 3.01 × 10 ²⁰ molecule left will be	es are removed from 98 r	ng of	$^{\circ}H_{2}SO_{4}$, then the n	umb	er of moles of H ₂ SO ₄
	(A) 0.1×10^{-3}	(B) 1.66 × 10 ⁻³	(C)	9.05×10^{-2}	(D)	0.5×10^{-3}

48.	How many moles of lead(II) chloride are formed from a reaction between 6.5 g of PbO are 3.2 g of HCl? [Atomic mass of Pb = 207 u]						
	(A) 0.011	(B)	0.029	(C)	0.044	(D)	0.333
49.	The number of radial r	nodes	s for 3p orbital is				
	(A) 3	(B)	4	(C)	2	(D)	1
50.	The pair of ions havin	g sar	ne electronic confi	gura	tion is		
	(A) Cr^{3+} , Fe^{3+}	(B)	Fe ³⁺ , Mn ²⁺	(C)	Fe ³⁺ , Co ³⁺	(D)	Sc^{3+}, Cr^{3+}
51.	Among halogens, the	corre	ct order of amount	of er	nergy released in e	lectr	on gain enthalpy:
	(A) $F > C1 > Br > I$	(B)	F < C1 < Br < I	(C)	F < Cl > Br > I	(D)	F < C1 < Br < I
52.	Electronic configuration	ons o	f four elements (i),	(ii),	(iii) and (iv) are giv	en b	elow:
	(i) $1s^2 2s^2 2p^6$	(ii)	$1s^2 2s^2 2p^4$	(iii)	$1s^22s^22p^63s^1$	(iv)	$1s^2 2s^2 2p^5$
	Which of the following	is th	e correct order of i	ncre	asing tendency to	gain	electron:
	(A) (i) $<$ (iii) $<$ (iv))		(B)	(i) < (ii) < (iii) < (ir	v)	
	(C) $(iv) < (ii) < (iii) < (iii)$)		(D)	(iv) < (i) < (ii) < (ii	i)	
53.	The d-orbitals involved	in s	p ³ d hybridisation:				
	(A) $d_{x^2-y^2}$	(B)	d_{xy}	(C)	$\mathbf{d}_{\mathbf{z}^2}$	(D)	d_{zx}
54.	The hybridisation of p	hospi	horous in POCl ₃ is	the s	same as		
	(A) P in PCl ₃	(B)	S in SF ₄	(C)	Cl in ClF ₃	(D)	B in BCl ₃
55.	At 27°C and under on temperature is increas			_	_		
	(A) V mL	(B)	2V mL	(C)	V/2 mL	(D)	V/3 mL
56 .	The density of a gas A of B. The ratio of the p		_		ılar mass of A is ha	alf of	the molecular mass
	(A) 1/4	(B)	1/2	(C)	4/1	(D)	2/1
57.	The enthalpies of con-283 kJ mol ⁻¹ respecti						
	(A) -676.5 kJ	(B)	676.5 kJ	(C)	110.5 kJ	(D)	–110.5 kJ
58.	For a reaction,						
	$2NH_3(g) \longrightarrow N_2(g) +$	3H ₂ ((g)				
	Which of the following	state	ements is correct?				
	(A) $\Delta H = \Delta U$	(B)	$\Delta H < \Delta U$	(C)	$\Delta H > \Delta U$	(D)	$\Delta H = O$
59 .	For the reaction	,		` ,		` ,	
	$PCl_3(g) + Cl_2(g) \rightleftharpoons PC$	$l_5(g)$					
	the value of k_c at 250°	C is 2	26 L mol ⁻¹ . The val	ue of	f k, at the same ter	nper	ature will be
	(A) 0.61 atm ⁻¹		0.57 atm ⁻¹		0.83 atm ⁻¹		0.46 atm ⁻¹
60.	Which is the correct re	` ,		. ,		` ,	
-	2						
	(A) $\left[\operatorname{Ag}^{+}\right]^{2}\left[\operatorname{CrO}_{4}^{2-}\right]$	(B)	[ZAg][CrO ₄]	(C)	[ZAg][CrO ₄]	(D)	[ZAg] [CrO ₄]

FOR NON-MEDICAL STUDENTS ONLY

Mathematics

Each set X_r contains 5 elements and each set Y_r contains 2 elements and $\bigcap_{r=0}^{20} X_r = S = \bigcup_{r=0}^{n} Y_r$. If each element of S belong to exactly 10 of the X_r 's and to exactly 4 of the Y_r 's, then n is

(A) 10 (B) 20 (C) 100

(D) 50

Let S = set of points inside the square, T = the set of points inside the triangle and C = the set of points inside the circle. If the triangle and circle intersect each other and are contained in a square. Then

(A) $S \cap T \cap C = \emptyset$ (B) $S \cup T \cup C = C$ (C) $S \cup T \cup C = S$ (D) $S \cup T = S \cap C$

63. Range of $f(x) = \frac{1}{1 - 2\cos x}$ is

(A) $\left[\frac{1}{3},1\right]$ (B) $\left[-1,\frac{1}{3}\right]$ (C) $\left[-\infty,-1\right]\cup\left[\frac{1}{3},\infty\right)$ (D) $\left[-\frac{1}{3},1\right]$

The domain of the function f given by $f(x) = \frac{x^2 + 2x + 1}{x^2 - x - 6}$

(A) $R - \{3, -2\}$

(B) $R - \{-3, 2\}$

(C) R - [3, -2] (D) R - (3, -2)

65. If $\tan \theta = \frac{1}{2}$ and $\tan \phi = \frac{1}{3}$, then the value of $\theta + \phi$ is

(C) 0

(D) $\frac{\pi}{4}$

The value of cos 1° cos 2° cos 3° ... cos 179° is

(A) $\frac{1}{\sqrt{2}}$

(B) 0

(C) 1

(D) -1

Which of the following is correct?

 $\sin 1^{\circ} > \sin 1$

(B) $\sin 1^{\circ} < \sin 1$

(C) $\sin 1^\circ = \sin 1$ (D) $\sin 1^\circ = \frac{\pi}{18^\circ} \sin 1$

 $\sin x + i \cos 2x$ and $\cos x - i \sin 2x$ are conjugate to each other for:

(B) x = 0

(C) $x = \left(n + \frac{1}{2}\right) \frac{\pi}{2}$ (D) No value of x

69. If $f(z) = \frac{7-z}{1-z^2}$, where z = 1 + 2i, then |f(z)| is

(A) $\frac{|z|}{2}$

(B) |z|

(C) 2|z|

(D) none of these.

70. If $\left(\frac{1+i}{1-i}\right)^x = 1$, then

(A) x = 2n + 1

(B) x = 4n

(C) x = 2n

(D) x = 4n + 1, where $n \in \mathbb{N}$

71. If $|x+2| \le 9$, then

(A) $x \in (-7, 11)$

(B) $x \in [-11, 7]$

(C) $x \in (-\infty, -7) \cup (11, \infty)$

(D) $x \in (-\infty, -7) \cup [11, \infty)$

72.		sum of the digits en all at a time is	ın uı	nit place of all the i	num	bers formed with the	ne h	elp of 3, 4, 5 and 6
	(A)	432	(B)	108	(C)	36	(D)	18
73 .				ich we can choose				
				es at least two men			nany	women as men is
	(A)	94	` ,	126		128	` ,	None
74.	The are	two successive te	rms i	in the expansion of	(1 +	x) ²⁴ whose coefficie	ents	are in the ratio 1:4
	(A)	3^{rd} and 4^{th}	(B)	4 th and 5 th	(C)	5 th and 6 th	(D)	6^{th} and 7^{th}
75.	The	coefficient of x^n in	the	expansion of $(1 + x)$	a^{2n} as	and $(1 + x)^{2n-1}$ are in	the	ratio.
	(A)	1:2	(B)	1:3	(C)	3:1	(D)	2:1
76.		2 <i>y</i> , 3 <i>z</i> are in A.P., G.P. is	wher	re the distinct numl	bers	x, y, z are in G.P. th	ien t	he common ratio o
	(A)	3	(B)	<u>1</u>	(C)	2	(D)	<u>1</u>
				3			(D)	2
77.	The	third term of G.P.		The product of its				
	(A)	4	(B)	44	(C)	45	(D)	None of these
78.			lines	passing through t	he p	oint (1, 0) and at a	a dis	tance $\frac{\sqrt{3}}{2}$ from the
	_	in, are	_	_		_	_	_
	(A)	$\sqrt{3}x + y - \sqrt{3} = 0,$	$\sqrt{3}x$	$-y-\sqrt{3}=0$	(B)	$\sqrt{3}x + y + \sqrt{3} = 0, \sqrt{3}$	/3 <i>x</i> -	$-y + \sqrt{3} = 0$
	(C)	$x+\sqrt{3}y-\sqrt{3}=0,$	x -	$\sqrt{3}y - \sqrt{3} = 0$	(D)	None of these.		
79.	Equ	ations of diagonal	s of t	he square formed b	y the	e lines $x = 0$, $y = 0$,	x = 1	and $y = 1$ are
	(A)	y = x, y + x = 1	(B)	y = x, x + y = 2	(C)	$2y = x, y + x = \frac{1}{3}$	(D)	y = 2x, y + 2x = 1
80.	The	distance between	the f	foci of a hyperbola i	s 16	and its eccentricity	y is .	$\sqrt{2}$. Its equation is
	(A)	$x^2 - y^2 = 32$	(B)	$\frac{x^2}{4} - \frac{y^2}{9} = 1$	(C)	$2x - 3y^2 = 7$	(D)	none of these
81.	The	area of the circle	centr	red at (1, 2) and pas	ssing	through (4, 6) is		
	(A)	5π	(B)	10π	(C)	25π	(D)	none of these
82.	L is are	the foot of the per	pend	licular drawn from	a po	nt (3, 4, 5) on <i>x</i> -ax	is. T	he coordinates of I
	(A)	(3, 0, 0)	(B)	(0, 4, 0)	(C)	(0, 0, 5)	(D)	none of these
83.	$\lim_{x\to 0}$	$\frac{\tan 2x - x}{3x - \sin x}$ is						
	(A)	2	(B)	$\frac{1}{2}$	(C)	$\frac{-1}{2}$	(D)	$\frac{1}{4}$
84.	Let	$f(x) = x - [x]; \in \mathbf{R},$	then	$f\left(\frac{1}{2}\right)$ {where [·] shows	ws g	reatest integer fund	ction	1}
	(A)	$\frac{3}{2}$	(B)	1	(C)	0	(D)	-1

helps excel	te n boards								
85.	If f	$(x) = 1 - x + x^2 - x^2$	³ – ɔ	$x^{99} + x^{100}$, then	f'(1) is eq	ual to			
	(A)	150	(B)	-50	(C)	-150	(D	50	
86.	lim	$\frac{\sin x}{\sqrt{x+1} - \sqrt{1-x}}$ is							
80.		VIO . 1 V1							
	(A)		(B)	0	(C)		•) –1	
87.		a, b, c, d, e be the							
	The	standard deviati	on of t	the observation	ons $a + k$,	b + k, c +	k, $d + k$, $e + k$	C 1S	
	(A)	s	(B)	ks	(C)	s + k	(D	$\frac{s}{k}$	
88.		e probabilities for t either A or B fai		ail in an exami	nation is ().2 and th	at for B is 0.3,	then the	probability
	(A)	> . 5	(B)	.5	(C)	≤.5	(D	0	
89.		probability that ultaneously with					occurs is 0.6	5. If A an	d B occur
	(A)	0.4	(B)	0.8	(C)	1.2	(D	1.6	
90.	Thr	ee numbers are c	hosen	from 1 to 20.	Find the	probabili	ty that they a	are not co	nsecutive
	(A)	$\frac{186}{190}$	(B)	187 190	(C)	$\frac{188}{190}$	(D	$\frac{18}{^{20}C_3}$	
				FOR MEDICA	LSTUDEN	ITS ONLY			
				ъ	iology				
~1	/T/1		_:11-		iology				
61.		receptors of stere In the cytoplasm	51a 110	illiones nes	(B)	Within t	he plasma m	embrane	
		Within the nucle	ar me	embrane	(D)		nc piasma m ood plasma	Cilibratic	
62.	` '	arding hypothalar			(2)		ood plasina		
	_	All vertebrate bra		ontain a hypot	thalamus				
		One of the most i endocrine systen	-		· -	ılamus is	to link the ne	rvous sys	stem to the
	(III)	The hypothalamu	ıs con	trols body tem	perature,	hunger, t	hirst, fatigue	and circa	dian cycle.
	Whi	ch of the followin	g is th	ne correct ans	wer				
	(A)	I, II, III are corre	ct		(B)		are correct		
	` '	I and III are corre		_	(D)		I are correct		
63.	mot	hich joint the art ion only in one p g considerable?							_
	(A)	Gliding joint of pl	anar j	oint	(B)	Hinge jo	int		
	(C)	Pivot joint			(D)	Condyloi	id joint		
64.		neys play an impo y fluids. Identify t							ctrolytes in
	(A)	Phosphate	(B)	Potassium	(C)	Iron	(D)	Bicarbo	nate

	(I) Transporting interstitial fluid back to the blood.										
	(II) Preventing intravascular clot formation										
	(III) Transporting fat absorbed from the small intestine to the blood.										
	(IV) Providing lymphocytes to help in the defence against disease causing agents.										
	Which of the following is the correct answer										
	(A) I, II, III, IV (B) I, II, III	(C)	I, III, IV	(D)	II, III, IV						
66.	Which of the following muscular actions will ventilation?	ll br	ring about in	spiration	during pulmonary						
	(A) Contraction of diaphragm and contraction	of e	external inter	costal mu	scles.						
	(B) Contraction of diaphragm and contraction	of i	nternal inter	costal mu	scles.						
	(C) Contraction of diaphragm and relaxation of	of ex	ternal interc	ostal mus	cles.						
	(D) Contraction of diaphragm and relaxation of	of in	ternal interco	ostal mus	cles.						
67.	Bile produced in the liver is associated with w	hich	of the follow	ring							
	(A) Emulsification of fats into tiny globules in the small intestine.										
	(B) Digestive action of pancreatic amylase.										
	(C) Emulsification of fats into amino acids.										
	(D) Production of amino acids.										
68.	Large amoeboid cells, that are a part of our tissue are called as	inna	ate immune	system, fo	ound in the areolar						
	(A) Macrophages (B) Mast cells	(C)	Fibroblasts	(D)	Adipocytes						
69.	Connecting link of Glycolysis and kreb's cycle	is									
	(A) Oxalo acetic acid	(B)	Phospho end	ol pyruvate	e						
	(C) Acetyl's co A	(D)	All of the ab	ove							
70 .	Which statement about photosynthesis in C4	plar	nts is NOT tru	ıe?							
	(A) The first product of carbon dioxide fixation	is a	compound w	vith 4 carb	oon atoms.						
	(B) C4 photosynthesis is an adaptation for pla	ants	living in hot,	arid clim	ates.						
	(C) Carbon dioxide is initially fixed in mesophy sheath cells in leaves of C4 plants.	/11 ce	ells, but the C	alvin cycl	e is active in bundle						
	(D) Less ATP is used overall for sugar biosyntl	hesi	s in C4 than	C3 plants							
71.	A technique of growing plants without soil in w nutrient solutions rather than being continuo		-		•						
	(A) Hydroponics (B) Aeroponics	(C)	Aquaporinic	s (D)	Aquaporins						
72 .	Turgor pressure is also referred to as										
	(A) Solute potential	(B)	Water poten	tial							
	(C) Pressure potential	(D)	Osmotic pot	ential							
73 .	Jute of commercial importance is										
	(A) Primary phloem	(B)	Secondary p	hloem							
	(C) Secondary xylem	(D)	Primary xyle	em							
74.	Histones and non-histones are										
	(A) Basic proteins associated with DNA	(B)	Acidic prote	ins associ	ated with DNA						

65. The basic function of lymphatic system are

75.	Chiasmata formation is visible in		
	(A) Zygotene (B) Pachytene	(C) Diplotene (D) Diakinesis	
76 .	The hierarchical classification of species base	d on evolutionary ancestry is called as	
	(A) Cladistics	(B) Phenetics	
	(C) Classical taxonomy	(D) Systematics	
77.	The part of DNA molecule that varies among	ONA molecules is its	
	(A) Glycerol attachment	(B) Nitrogenous base	
	(C) Sugars	(D) Phosphates	
78 .	Transfer of genetic information through trans	duction involves	
	(A) Conjugation		
	(B) Bacteriophage released from donor cells		
	(C) Another bacterium		
	(D) Physical contact between donor and recip	ent strains	
79 .	Which of the following is not a characteristic	of Basidiomycetes?	
	(A) They are called as club fungi.		
	(B) Motile cells are absent		
	(C) Primary mycelium is diploid		
	(D) In secondary mycelium each cell has two	nuclei.	
80.	Which of the following is not common to Fund	ria and Selaginella?	
	(A) Archegonium (B) Embryo	(C) Flagellate sperms (D) Roots	
81.	Both a mouth and an anal pore (a one way di	estive system) is present in	
	(A) Ctenophores (B) Cnidarians	(C) Tapeworm (D) Planarians	
82.	According to fluid mosaic model, plasma mem	orane is composed of	
	(A) Phospholipids and oligosaccharides		
	(B) Phospholipids and hemicellulose		
	(C) Phospholipids and integral proteins		
	(D) Phospholipids, extrinsic proteins and intr	•	
83.	1	is 8, what shall be the number of chromat	ids in
	each daughter cell after meiosis I? (A) 2 (B) 4	(C) 8 (D) 16	
84.	An essential amino acid is an amino acid tha		
0 1.	(A) Is synthesised in the body	(B) Is missing from the diet	
	(C) Must be provided in the diet	(D) Does not exist as a zwitterion	
85.		(b) Bood not exist as a 2witterion	
	(A) Sandy soil	(B) Saline marshy soil	
	(C) Marshy soil	(D) Water	
86.	An organized and differentiated cellular struc		
J J.	(A) vessels	(B) xylem parenchyma	
	(C) sieve tubes	(D) tracheids	

- **87.** Though Nitrogen is not considered a true mineral, yet it is sometimes kept under the category of minerals because
 - (A) It occurs in abundance in atmosphere
 - (B) It is required in large amounts by the plants
 - (C) It is absorbed by plants in the form of nitrates from the soil
 - (D) Its deficiency cannot be cured by any other element
- 88. ATP and NADPH are converted to ADP + Pi and NADP+ during
 - (A) The light dependent reaction
- (B) The light independent reaction

(C) Both of the above

- (D) None of the above
- **89.** Cyanide and carbon monoxide are poisons that affect oxidative phosphorylation by inhibiting:
 - (A) Electron transport chain
 - (B) Succinate dehydrogenase
 - (C) ATP synthesis
 - (D) Ionophores that disrupt the proton gradient by carrying protons across a membrane.
- **90.** The digestive enzyme that is most active at pH of 2, is
 - (A) Salivary amylase

(B) Pancreatic amylase

(C) Pepsin

(D) Trypsin

 $\times \cdot \times \cdot \times \cdot \times$

THIS PAGE IS LEFT INTERVILONALLY BLANCK.

THIS PAGE IS LEFT INTERVILONALLY BLANCK.

THIS PAGE IS LEFT INTERVILONALLY BLANCK.