

Studymate Foundation Paper

	te : 20/01/2019		CLASS							
	ration : 90 Min. x. Marks : 90					IX				
Gen 1. 2. 3. 4. 5.	No deduction from There is only ONE	ompulsory. otted ONE mark fo the total score will correct response sponse and marks fo	or each correct response be made if no response for each question. Filli or wrong response will l	e is indica ng up M	ORE THAN	DNE response in				
			Section A	– Sci	ence					
1.	A goalkeeper goal. This ena	-	-	hands	backward a	after holding	, the ball shot at the			
	(A) exert larg	er force on th	e ball							
	(B) reduce the force exerted by the ball on hands									
	(C) increase t) increase the rate of change of momentum								
	(D) decrease	ecrease the change in momentum								
2.		P has mass 2 m and velocity 5v. Another body Q has mass 8 m and velocity 1.25 v. T momentum P and Q is								
	(A) 2:1	(B)	1:1	(C)	1:2	(D)	3:2			
3.	A boy is whirl the stone	ing a stone ti	ed with a string i	in a ho	orizontal cir	izontal circular path. If the string break				
	(A) will continue to move in the circular path									
	(B) will move	B) will move along a straight line towards the centre of the circular path								
	(C) will move along a straight line tangential to the circular path									
	(D) will move along a straight line perpendicular to the circular path away from the boy									
4. Law of gravitation gives the gravitional force between										
(A) the earth and a point mass only (B) the earth				th and Sun only						
	., .	bodies having some mass			two charg	ed bodies on	nly			
5.	The value of 1		_							
_	(A) 3.6×10^5	()	3.6 × 10 ⁷ J	. ,	3.6×10^{6}		$3.6 \times 10^9 \mathrm{J}$			
6.	A body is thro is:	wn vertically	upward with velc	ocity (u). The grea	test height h	to which it will rise			
	(A) u/g	(B)	u²/2g	(C)	u²/g	(D)	u/2g			
7.	The numerica	l ratio of disp	lacement to dista	ance fo	or a moving	object is:				

- (A) always less than 1 (B) always equal to 1
- (C) always more than 1 (D) equal or less than 1

STUDY Area under a v-t graph represent a physical quantity which has the unit 8. (A) m^2 (B) m (C) m³ (D) m s⁻¹ 9. A body goes from A to B with a velocity of 20 m/s and comes back from B to A with a velocity of 30 m/s. The Average velocity of the body during the whole journey is (B) 25 m/s (C) 24 m/s (D) none of these (A) zero 10. According to the third law of motion, action and reaction (A) always act on th same body (B) always act on different bodies in opposite directions (C) have same magnitude and directions (D) act on either body normal to each other **11.** Which one of the following sets of phenomena would increase on raising the temperature? (A) Diffusion, evaporation, compression of gases (B) Evaporation, compression of gases, solubility (C) Evaporation, diffusion, expansion of gases (D) Evaporation, solubility, diffusion, compression of gases **12.** During summer, water kept in an earthen pot becomes cool because of the phenomenon of (C) osmosis (A) diffusion (B) transpiration (D) evaporation 13. On converting 25°C, 38°C and 66°C to kelvin scale, the correct sequence of temperature will be (A) 298 K, 311 K and 339 K (B) 298 K, 300 K and 338 K (C) 273 K, 278 K and 543 K (D) 298 K, 310 K and 338 K 14. Tincture of iodine has antiseptic properties. This solution is made by dissolving (B) iodine in vaseline (A) iodine in potassium iodide (C) iodine in water (D) iodine in alcohol **15.** Which of the following are chemical changes? (i) Decaying of wood (ii) Burning of wood (iii) Sawing of wood (iv) Hammering of a nail into a piece of wood (A) (i) and (ii) (B) (ii) and (iii) (C) (iii) and (iv) (D) (i) and (iv)**16.** A bomb explodes on the moon. How long will it take for the sound to reach the earth? (A) 10 sec (B) 1000 sec (C) 1 day (D) it will never reach the earth **17.** In the curve (see fig.) half the wavelength is (A) A B (B) BD (C) DE (D) A E **18.** Arrange the following media in ascending order or speed of sound in them: A – Water ; B – Steel ; C – Nitrogen (A) C, A, B (B) C, B, A (C) B, A, C (D) A, C, B

source of sound and the reflecting body is (A) 513 m (B) 351 m (C) 153 m (D) 254 m 20. Mahesh applied 10 N of force over 3 m in 10 seconds. Joy applied the same force over the same distance in 1 minute. Who did more work? (A) Mahesh (B) Joy (C) Both did the same work (D) Both did zero work 21. Which of the following are true for an element? (i) Atomic number = number of protons + number of electrons (ii) Mass number = number of protons + number of neutrons (iii) Atomic number = number of protons = number of neutrons (iv) Atomic number = number of protons = number of neutrons (iv) Atomic number = number of protons = number of electrons (A) (i) and (ii) (B) (i) and (iii) (C) (ii) and (iii) (D) (ii) and (iv) 22. The balancing of chemical equations is in accordance with: (A) Law of combining volumes (B) Law of constant proportions (C) Law of conservation of mass (D) Both (B) and (C) 23. Which of the following is a correct statement: (A) Na ₂ S is sodium sulphide, Na ₂ SO ₃ is sodium sulphite, Na ₂ SO ₄ is sodium sulphate (B) Na ₂ S is sodium sulphide, Na ₂ SO ₃ is sodium sulphate, Na ₂ SO ₄ is sodium sulphate (C) Na ₂ S is sodium sulphite, Na ₂ SO ₃ is sodium sulphite, Na ₂ SO ₄ is sodium sulphite (D) Na ₂ S is sodium sulphite, Na ₂ SO ₃ is sodium sulphite, Na ₂ SO ₄ is sodium sulphite (D) Na ₂ S is sodium sulphite, Na ₂ SO ₃ is sodium sulphite, Na ₂ SO ₄ is sodium sulphite (A) 3.88 × 10 ²³ (B) 1.244 × 10 ²³ (C) 3.88 × 10 ²² (D) 1.244 × 10 ²² 25. The combining capacity of an element is called (A) Valency (B) Atomicity (C) Atomic number (D) Valence electrons 26. Which of the following are homogeneous in nature? (i) ice (ii) wood (iii) soil (iv) air (A) (i) and (iii) (B) (ii) and (iv) (C) (i) and (iv) (D) (iii) and (iv)
 20. Mahesh applied 10 N of force over 3 m in 10 seconds. Joy applied the same force over the same distance in 1 minute. Who did more work? (A) Mahesh (B) Joy (C) Both did the same work (D) Both did zero work 21. Which of the following are true for an element? (i) Atomic number = number of protons + number of electrons (ii) Mass number = number of protons + number of neutrons (iii) Atomic number = number of protons = number of neutrons (iv) Atomic number = number of protons = number of neutrons (iv) Atomic number = number of protons = number of electrons (A) (i) and (ii) (B) (i) and (iii) (C) (ii) and (iii) (D) (ii) and (iv) 22. The balancing of chemical equations is in accordance with: (A) Law of combining volumes (B) Law of constant proportions (C) Law of conservation of mass (D) Both (B) and (C) 23. Which of the following is a correct statement: (A) Na₂S is sodium sulphide, Na₂SO₃ is sodium sulphate (B) Na₂S is sodium sulphide, Na₂SO₃ is sodium sulphate (C) Na₂S is sodium sulphite, Na₂SO₃ is sodium sulphate (D) Na₂S is sodium sulphite, Na₂SO₃ is sodium sulphite (D) Na₂S is sodium sulphite, Na₂SO₃ is sodium sulphite (D) Na₂S is sodium sulphite, Na₂SO₃ is sodium sulphite (D) Na₂S is sodium sulphite, Na₂SO₃ is sodium sulphite 24. If isotopic distribution of C-12 and C-14 is 98% and 2% respectively, then number of C-14 atoms in 12 g of C is: (A) 3.88 × 10²³ (B) 1.244 × 10²³ (C) 3.88 × 10²² (D) 1.244 × 10²² 25. The combining capacity of an element is called (A) Valency (B) Atomicity (C) Atomic number (D) Valence electrons 26. Which of the following a
 (C) Both did the same work (D) Both did zero work 21. Which of the following are true for an element? (i) Atomic number = number of protons + number of electrons (ii) Mass number = number of protons + number of neutrons (iii) Atomic number = number of protons = number of neutrons (iii) Atomic number = number of protons = number of lectrons (i) Atomic number = number of protons = number of lectrons (ii) Atomic number = number of protons = number of lectrons (ii) Atomic number = number of protons = number of lectrons (A) (i) and (ii) (B) (i) and (iii) (C) (ii) and (iii) (D) (ii) and (iv) 22. The balancing of chemical equations is in accordance with: (A) Law of combining volumes (B) Law of constant proportions (C) Law of conservation of mass (D) Both (B) and (C) 23. Which of the following is a correct statement: (A) Na₂S is sodium sulphide, Na₂SO₃ is sodium sulphite, Na₂SO₄ is sodium sulphate (B) Na₂S is sodium sulphide, Na₂SO₃ is sodium sulphate, Na₂SO₄ is sodium sulphite (D) Na₂S is sodium sulphide, Na₂SO₃ is sodium sulphite, Na₂SO₄ is sodium sulphide 24. If isotopic distribution of C-12 and C-14 is 98% and 2% respectively, then number of C-14 atoms in 12 g of C is: (A) 3.88 × 10²³ (B) 1.244 × 10²³ (C) 3.88 × 10²² (D) 1.244 × 10²² 25. The combining capacity of an element is called (A) Valency (B) Atomicity (C) Atomic number (D) Valence electrons 26. Which of the following are homogeneous in nature? (i) ice (ii) wood (iii) soil (iv) air
 21. Which of the following are true for an element? (i) Atomic number = number of protons + number of electrons (ii) Mass number = number of protons + number of neutrons (iii) Atomic number = number of protons = number of neutrons (iv) Atomic number = number of protons = number of electrons (A) (i) and (ii) (B) (i) and (iii) (C) (ii) and (iii) (D) (ii) and (iv) 22. The balancing of chemical equations is in accordance with: (A) Law of combining volumes (B) Law of constant proportions (C) Law of conservation of mass (D) Both (B) and (C) 23. Which of the following is a correct statement: (A) Na₂S is sodium sulphide, Na₂SO₃ is sodium sulphite, Na₂SO₄ is sodium sulphate (B) Na₂S is sodium sulphide, Na₂SO₃ is sodium sulphate, Na₂SO₄ is sodium sulphate (C) Na₂S is sodium sulphide, Na₂SO₃ is sodium sulphate, Na₂SO₄ is sodium sulphate (D) Na₂S is sodium sulphide, Na₂SO₃ is sodium sulphate, Na₂SO₄ is sodium sulphate (D) Na₂S is sodium sulphide, Na₂SO₃ is sodium sulphate, Na₂SO₄ is sodium sulphate (D) Na₂S is sodium sulphide, Na₂SO₃ is sodium sulphate, Na₂SO₄ is sodium sulphide 24. If isotopic distribution of C-12 and C-14 is 98% and 2% respectively, then number of C-14 atoms in 12 g of C is: (A) 3.88 × 10²³ (B) 1.244 × 10²³ (C) 3.88 × 10²² (D) 1.244 × 10²² 25. The combining capacity of an element is called (A) Valency (B) Atomicity (C) Atomic number (D) Valence electrons 26. Which of the following are homogeneous in nature? (i) ice (ii) wood (iii) soil (iv) air
 (i) Atomic number = number of protons + number of electrons (ii) Mass number = number of protons + number of neutrons (iii) Atomic mass = number of protons = number of neutrons (iv) Atomic number = number of protons = number of electrons (A) (i) and (ii) (B) (i) and (iii) (C) (ii) and (iii) (D) (ii) and (iv) 22. The balancing of chemical equations is in accordance with: (A) Law of combining volumes (B) Law of constant proportions (C) Law of conservation of mass (D) Both (B) and (C) 23. Which of the following is a correct statement: (A) Na₂S is sodium sulphide, Na₂SO₃ is sodium sulphite, Na₂SO₄ is sodium sulphate (B) Na₂S is sodium sulphide, Na₂SO₃ is sodium sulphide, Na₂SO₄ is sodium sulphate (D) Na₂S is sodium sulphite, Na₂SO₃ is sodium sulphite, Na₂SO₄ is sodium sulphide 24. If isotopic distribution of C-12 and C-14 is 98% and 2% respectively, then number of C-14 atoms in 12 g of C is: (A) 3.88 × 10²³ (B) 1.244 × 10²³ (C) Atomic number (D) Valence electrons (A) Valency (B) Atomicity (C) Atomic number (D) Valence electrons
 (ii) Mass number = number of protons + number of neutrons (iii) Atomic mass = number of protons = number of neutrons (iv) Atomic number = number of protons = number of electrons (A) (i) and (ii) (B) (i) and (iii) (C) (ii) and (iii) (D) (ii) and (iv) 22. The balancing of chemical equations is in accordance with: (A) Law of combining volumes (B) Law of constant proportions (C) Law of conservation of mass (D) Both (B) and (C) 23. Which of the following is a correct statement: (A) Na₂S is sodium sulphide, Na₂SO₃ is sodium sulphite, Na₂SO₄ is sodium sulphate (B) Na₂S is sodium sulphide, Na₂SO₃ is sodium sulphite, Na₂SO₄ is sodium sulphate (C) Na₂S is sodium sulphite, Na₂SO₃ is sodium sulphite, Na₂SO₄ is sodium sulphite (D) Na₂S is sodium sulphite, Na₂SO₃ is sodium sulphite, Na₂SO₄ is sodium sulphide 24. If isotopic distribution of C-12 and C-14 is 98% and 2% respectively, then number of C-14 atoms in 12 g of C is: (A) Valency (B) 1.244 × 10²³ (C) Atomic number (D) Valence electrons 26. Which of the following are homogeneous in nature? (i) ice (ii) wood (iii) soil (iv) air
 (iii) Atomic mass = number of protons = number of neutrons (iv) Atomic number = number of protons = number of electrons (A) (i) and (ii) (B) (i) and (iii) (C) (ii) and (iii) (D) (ii) and (iv) 22. The balancing of chemical equations is in accordance with: (A) Law of combining volumes (B) Law of constant proportions (C) Law of conservation of mass (D) Both (B) and (C) 23. Which of the following is a correct statement: (A) Na₂S is sodium sulphide, Na₂SO₃ is sodium sulphite, Na₂SO₄ is sodium sulphate (B) Na₂S is sodium sulphide, Na₂SO₃ is sodium sulphate, Na₂SO₄ is sodium sulphate (C) Na₂S is sodium sulphide, Na₂SO₃ is sodium sulphate, Na₂SO₄ is sodium sulphate (D) Na₂S is sodium sulphite, Na₂SO₃ is sodium sulphate, Na₂SO₄ is sodium sulphate (D) Na₂S is sodium sulphite, Na₂SO₃ is sodium sulphate, Na₂SO₄ is sodium sulphite (D) Na₂S is sodium sulphite, Na₂SO₃ is sodium sulphite, Na₂SO₄ is sodium sulphite (D) Na₂S is sodium sulphite, Na₂SO₃ is sodium sulphite, Na₂SO₄ is sodium sulphite (D) Na₂S is sodium sulphite, Na₂SO₃ is sodium sulphite, Na₂SO₄ is sodium sulphite (D) Na₂S is sodium sulphite, Na₂SO₃ is sodium sulphite, Na₂SO₄ is sodium sulphide 24. If isotopic distribution of C-12 and C-14 is 98% and 2% respectively, then number of C-14 atoms in 12 g of C is: (A) 3.88 × 10²³ (B) 1.244 × 10²³ (C) 3.88 × 10²² (D) 1.244 × 10²² 25. The combining capacity of an element is called (A) Valency (B) Atomicity (C) Atomic number (D) Valence electrons 26. Which of the following are homogeneous in nature? (i) ice (ii) wood (iii) soil (iv) air
 (iv) Atomic number = number of protons = number of electrons (A) (i) and (ii) (B) (i) and (iii) (C) (ii) and (iii) (D) (ii) and (iv) 22. The balancing of chemical equations is in accordance with: (A) Law of combining volumes (B) Law of constant proportions (C) Law of conservation of mass (D) Both (B) and (C) 23. Which of the following is a correct statement: (A) Na₂S is sodium sulphide, Na₂SO₃ is sodium sulphite, Na₂SO₄ is sodium sulphate (B) Na₂S is sodium sulphide, Na₂SO₃ is sodium sulphide, Na₂SO₄ is sodium sulphate (C) Na₂S is sodium sulphide, Na₂SO₃ is sodium sulphate, Na₂SO₄ is sodium sulphate (D) Na₂S is sodium sulphite, Na₂SO₃ is sodium sulphate, Na₂SO₄ is sodium sulphate (D) Na₂S is sodium sulphite, Na₂SO₃ is sodium sulphite, Na₂SO₄ is sodium sulphite (D) Na₂S is sodium sulphite, Na₂SO₃ is sodium sulphite, Na₂SO₄ is sodium sulphite (D) Na₂S is sodium sulphite, Na₂SO₃ is sodium sulphite, Na₂SO₄ is sodium sulphite (D) Na₂S is sodium sulphite, Na₂SO₃ is sodium sulphite, Na₂SO₄ is sodium sulphite (D) Na₂S is sodium sulphite, Na₂SO₃ is sodium sulphite, Na₂SO₄ is sodium sulphite (D) Na₂S is sodium sulphite, Na₂SO₃ is sodium sulphite, Na₂SO₄ is sodium sulphite 24. If isotopic distribution of C-12 and C-14 is 98% and 2% respectively, then number of C-14 atoms in 12 g of C is: (A) 3.88 × 10²³ (B) 1.244 × 10²³ (C) 3.88 × 10²² (D) 1.244 × 10²² 25. The combining capacity of an element is called (A) Valency (B) Atomicity (C) Atomic number (D) Valence electrons 26. Which of the following are homogeneous in nature? (i) ice (ii) wood (iii) soil
(A) (i) and (ii)(B) (i) and (iii)(C) (ii) and (iii)(D) (ii) and (iv) 22. The balancing of chemical equations is in accordance with: (A) Law of combining volumes (C) Law of conservation of mass (D) Both (B) and (C)(D) (ii) and (iv) 23. Which of the following is a correct statement: (A) Na2S is sodium sulphide, Na2SO3 is sodium sulphite, Na2SO4 is sodium sulphate (B) Na2S is sodium sulphite, Na2SO3 is sodium sulphide, Na2SO4 is sodium sulphate (C) Na2S is sodium sulphite, Na2SO3 is sodium sulphate, Na2SO4 is sodium sulphate (D) Na2S is sodium sulphite, Na2SO3 is sodium sulphate, Na2SO4 is sodium sulphite (D) Na2S is sodium sulphite, Na2SO3 is sodium sulphite, Na2SO4 is sodium sulphite (D) Na2S is sodium sulphite, Na2SO3 is sodium sulphite, Na2SO4 is sodium sulphite (D) Na2S is sodium sulphite, Na2SO3 is sodium sulphite, Na2SO4 is sodium sulphite (D) Na2S is sodium sulphite, Na2SO3 is sodium sulphite, Na2SO4 is sodium sulphite (D) Na2S is sodium sulphite, Na2SO3 is sodium sulphite, Na2SO4 is sodium sulphite (D) Na2S is sodium sulphite, Na2SO3 is sodium sulphite, Na2SO4 is sodium sulphite (D) Na2S is sodium sulphite, Na2SO3 is sodium sulphite, Na2SO4 is sodium sulphite (D) Na2S is sodium sulphite, Na2SO3 is sodium sulphite, Na2SO4 is sodium sulphite (D) Na2S is sodium sulphite, Na2SO3 is sodium sulphite, Na2SO4 is sodium sulphite (D) Na2S is sodium sulphite, Na2SO3 is sodium sulphite, Na2SO4 is sodium sulphite (C) Na2S is sodium sulphite, Na2SO3 is sodium sulphite, Na2SO4 is sodium sulphite (D) Na2S is sodium sulphite, Na2SO3 is sodium sulphite, Na2SO4 is sodium sulphite (D) Na2S is sodium sulphite, Na2SO3 is sodium sulphite, Na2SO4 is sodium sulphite (D) Na2S is sodium sulphite, Na2SO3 (C) 3.88 × 10 ²² (D) 1.244 × 10 ²² 25. The combining capacity of an element is called (A) Valence (A) Valence (B) Atomicity <br< th=""></br<>
 22. The balancing of chemical equations is in accordance with: (A) Law of combining volumes (B) Law of constant proportions (C) Law of conservation of mass (D) Both (B) and (C) 23. Which of the following is a correct statement: (A) Na₂S is sodium sulphide, Na₂SO₃ is sodium sulphite, Na₂SO₄ is sodium sulphate (B) Na₂S is sodium sulphide, Na₂SO₃ is sodium sulphide, Na₂SO₄ is sodium sulphate (C) Na₂S is sodium sulphite, Na₂SO₃ is sodium sulphate, Na₂SO₄ is sodium sulphate (D) Na₂S is sodium sulphite, Na₂SO₃ is sodium sulphate, Na₂SO₄ is sodium sulphate (D) Na₂S is sodium sulphite, Na₂SO₃ is sodium sulphate, Na₂SO₄ is sodium sulphite (D) Na₂S is sodium sulphite, Na₂SO₃ is sodium sulphite, Na₂SO₄ is sodium sulphite (D) Na₂S is sodium sulphite, Na₂SO₃ is sodium sulphite, Na₂SO₄ is sodium sulphite (D) Na₂S is sodium sulphite, Na₂SO₃ is sodium sulphite, Na₂SO₄ is sodium sulphite (D) Na₂S is sodium sulphite, Na₂SO₃ is sodium sulphite, Na₂SO₄ is sodium sulphite (D) Na₂S is sodium sulphite, Na₂SO₃ is sodium sulphite, Na₂SO₄ is sodium sulphite (D) Na₂S is sodium sulphite, Na₂SO₃ is sodium sulphite, Na₂SO₄ is sodium sulphite (D) Na₂S is sodium sulphite, Na₂SO₃ is sodium sulphite, Na₂SO₄ is sodium sulphite (D) Na₂S is sodium sulphite, Na₂SO₃ is sodium sulphite, Na₂SO₄ is sodium sulphite 24. If isotopic distribution of C-12 and C-14 is 98% and 2% respectively, then number of C-14 atoms in 12 g of C is: (A) 3.88 × 10²³ (B) 1.244 × 10²³ (C) 3.88 × 10²² (D) 1.244 × 10²² 25. The combining capacity of an element is called (A) Valency (B) Atomicity (C) Atomic number (D) Valence electrons
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
(C) Law of conservation of mass(D) Both (B) and (C)23. Which of the following is a correct statement: (A) Na2S is sodium sulphide, Na2SO3 is sodium sulphite, Na2SO4 is sodium sulphate (B) Na2S is sodium sulphite, Na2SO3 is sodium sulphide, Na2SO4 is sodium sulphate (C) Na2S is sodium sulphite, Na2SO3 is sodium sulphate, Na2SO4 is sodium sulphate (D) Na2S is sodium sulphite, Na2SO3 is sodium sulphate, Na2SO4 is sodium sulphate (D) Na2S is sodium sulphite, Na2SO3 is sodium sulphate, Na2SO4 is sodium sulphate (D) Na2S is sodium sulphite, Na2SO3 is sodium sulphate, Na2SO4 is sodium sulphite
 23. Which of the following is a correct statement: (A) Na₂S is sodium sulphide, Na₂SO₃ is sodium sulphite, Na₂SO₄ is sodium sulphate (B) Na₂S is sodium sulphite, Na₂SO₃ is sodium sulphide, Na₂SO₄ is sodium sulphate (C) Na₂S is sodium sulphide, Na₂SO₃ is sodium sulphate, Na₂SO₄ is sodium sulphite (D) Na₂S is sodium sulphite, Na₂SO₃ is sodium sulphate, Na₂SO₄ is sodium sulphite (D) Na₂S is sodium sulphite, Na₂SO₃ is sodium sulphite, Na₂SO₄ is sodium sulphite (D) Na₂S is sodium sulphite, Na₂SO₃ is sodium sulphite, Na₂SO₄ is sodium sulphide 24. If isotopic distribution of C-12 and C-14 is 98% and 2% respectively, then number of C-14 atoms in 12 g of C is: (A) 3.88 × 10²³ (B) 1.244 × 10²³ (C) 3.88 × 10²² (D) 1.244 × 10²² 25. The combining capacity of an element is called (A) Valency (B) Atomicity (C) Atomic number (D) Valence electrons 26. Which of the following are homogeneous in nature? (i) ice (ii) wood (iii) soil (iv) air
(A) Na ₂ S is sodium sulphide, Na ₂ SO ₃ is sodium sulphite, Na ₂ SO ₄ is sodium sulphate (B) Na ₂ S is sodium sulphite, Na ₂ SO ₃ is sodium sulphide, Na ₂ SO ₄ is sodium sulphate (C) Na ₂ S is sodium sulphide, Na ₂ SO ₃ is sodium sulphate, Na ₂ SO ₄ is sodium sulphite (D) Na ₂ S is sodium sulphite, Na ₂ SO ₃ is sodium sulphite, Na ₂ SO ₄ is sodium sulphide 24. If isotopic distribution of C-12 and C-14 is 98% and 2% respectively, then number of C-14 atoms in 12 g of C is: (A) 3.88×10^{23} (B) 1.244×10^{23} (C) 3.88×10^{22} (D) 1.244×10^{22} 25. The combining capacity of an element is called (A) Valency (B) Atomicity (C) Atomic number (D) Valence electrons 26. Which of the following are homogeneous in nature? (i) ice (ii) wood (iii) soil (iv) air
$ \begin{array}{llllllllllllllllllllllllllllllllllll$
(C) Na2S is sodium sulphide, Na2SO3 is sodium sulphate, Na2SO4 is sodium sulphite(D) Na2S is sodium sulphite, Na2SO3 is sodium sulphite, Na2SO4 is sodium sulphide 24. If isotopic distribution of C-12 and C-14 is 98% and 2% respectively, then number of C-14 atoms in 12 g of C is:(A) 3.88×10^{23} (B) 1.244×10^{23} (C) 3.88×10^{22} (D) 1.244×10^{22} 25. The combining capacity of an element is called(A) Valency(B) Atomicity(C) Atomic number(D) Valence electrons 26. Which of the following are homogeneous in nature?(i) ice(ii) wood(iii) soil(iv) air
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
24. If isotopic distribution of C-12 and C-14 is 98% and 2% respectively, then number of C-14 atoms in 12 g of C is: (A) 3.88×10^{23} (B) 1.244×10^{23} (C) 3.88×10^{22} (D) 1.244×10^{22} 25. The combining capacity of an element is called (A) Valency (B) Atomicity (C) Atomic number (D) Valence electrons 26. Which of the following re-homogeneous in number is called (i) ice (ii) wood (iii) soil (iv) air
atoms in 12 g of C is:(A) 3.88×10^{23} (B) 1.244×10^{23} (C) 3.88×10^{22} (D) 1.244×10^{22} 25. The combining capacity of an element is called(A) Valency(B) Atomicity(C) Atomic number(D) Valence electrons26. Which of the following are homogeneous in nature?(i) ice(ii) wood(iii) soil(iv) air
 25. The combining capacity of an element is called (A) Valency (B) Atomicity (C) Atomic number (D) Valence electrons 26. Which of the following are homogeneous in nature? (i) ice (ii) wood (iii) soil (iv) air
(A) Valency(B) Atomicity(C) Atomic number(D) Valence electrons26. Which of the following are homogeneous in nature?(i) ice(ii) wood(iii) soil(iv) air
26. Which of the following are homogeneous in nature?(i) ice(ii) wood(iii) soil(iv) air
(i) ice (ii) wood (iii) soil (iv) air
(A) (i) and (iii) (B) (ii) and (iv) (C) (i) and (iv) (D) (iii) and (iv)
27. Which of the following statements is not true about an atom?
(A) Atoms are not able to exist independently
(B) Atoms are the basic units from which molecules and ions are formed
(C) Atoms are always neutral in nature
(D) Atoms aggregate in large numbers to form the matter that we can see, feel or touch
28. Which of the following contains maximum number of molecules?
(A) $1 g CO_2$ (B) $1 g N_2$ (C) $1 g H_2$ (D) $1 g CH_4$
29. Rutherford's 'alpha (α) particles scattering experiment' resulted in to discovery of
(A) Electron (B) Proton
(C) Nucleus in the atom (D) Atomic mass
30. The number of electrons in an element X is 15 and the number of neutrons is 16. Which of the following is the correct representation of the element?
(A) $_{15}^{31}X$ (B) $_{16}^{31}X$ (C) $_{15}^{16}X$ (D) $_{16}^{15}X$

study make helps excel in boards

neips excern	li boarus								
31.	The end of a long bone	e is co	onnected to anothe	er lon	g bone by-				
	(A) Ligament	(B)	Tendon	(C)	Cartilage	(D)	Muscle		
32.	Simple tissue in plan	ts are	2-						
	(A) Parenchyma, xyle	em, pl	nloem	(B)	Parenchyma, co	ollench	yma, cork		
	(C) Parenchyma, Scle	erenc	hyma, Epidermis	(D)	Parenchyma, Co	ollench	yma, Sclerenchyma		
33.	Main deposit of biolog	arbon is-							
	(A) Atmosphere	(B)	Ocean	(C)	Soil	(D)	All of these		
34.	Renewable source of	energ	y is-						
	(A) Kerosene	(B)	Coal	(C)	Biomass	(D)	Petrol		
35.	Leguminous crops he	lps to	o increase which n	utrie	nt in soil				
	(A) Nitrogen	(B)	Phosphorus	(C)	Calcium	(D)	Potassium		
36.	DNA stands for								
	(A) Deoxyribonucleic	(A) Deoxyribonucleic acid				Dihydroribonucleate acid			
	(C) Dicarbonucleic acid			(D)	Diribonucleate acetate				
37.	Cell wall in Agaricus i	is ma	de up of						
	(A) Cellulose	(B)	Chitin	(C)	Pectin	(D)	All of these		
38.	Out of the following cl	harac	ters which one bes	st sui	its a monocotyledon plant -				
	(A) Reticulate venation			(B)	Trimerous flow	er			
	(C) Tap root			(D)	Pentamerous flower				
39.	The starch storing bo	present in the chlo	ropla	st of Spirogyra a	re knov	vn as-			
	(A) Zygospores	(B)	zoospores	(C)	Aplanospores	(D)	Pyrenoids		
40.	10. What is common among silverfish, scorpion, honeybee and cockroach?								
	(A) Compound eye	(B)	Poision gland	(C)	Jointed legs	(D)	Metamorphism		
41.	Which one of the follo	wing	is a macronutrien	t-					
	(A) Zinc	(B)	Iron	(C)	Copper	(D)	Phosphorous		
42.	An Italian bee variety	intro	duced in India for	hone	y production is:				
	(A) Apis dorsata	(B)	Apis mellifera	(C)	Apis cerana	(D)	Apis florea		
43.	A polyculture of fish in	n a si	ngle pond having o	different food habits is known as					
	(A) Aquaculture			(B)	Mariculture				
	(C) Integrated culture	e		(D)	Composite fish culture				
44.	Warren and Marshall discovered-								
	(A) Helicobacter which causes peptic ulcer								
	(B) Typhoid causing bacteria								
	(C) Trypansoma which causes sleeping sickness								
	(D) DPT a triple vacci	ine							
45. Typhoid : Bacterial :: Polio:									
	(A) Protozoan								
	(A) Protozoan			(B)	Bacterial disea	se			

			Section – B (I	Mathe	ematics)		
46.	If radius of the base resultant cone gets:	of a c	cone is doubled a	nd its	height is halved	, ther	n the volume of the
	(A) halved	(B)	doubled	(C)	remains same	(D)	four times
47.	The radius and heigh surface area of the be		cylindrical box wit	thout	lid, are <i>r</i> and <i>h</i> res	specti	vely. The total outer
	(A) $\pi h(2r+h)$	(B)	$\pi r(h+2r)$	(C)	$\pi r(2h+r)$	(D)	$\pi(2h+r)$
48.	The class mark of the	e class	s a-150 is 140, ti	hen th	ne value of <i>a</i> is		
	(A) 130	(B)	140	(C)	120	(D)	110
49.	If the class marks is corresponding to the			tion a	re 19.5, 26.5, 33	3.5, 4	0.5, then the class
	(A) 16–23	(B)	30–37	(C)	32–35	(D)	28–39
50.	If P(E) is the probabil	ity of a	an event E, then				
	(A) $0 < P(E) < 1$	(B)	$0 \le P(E) < 1$	(C)	$0 \le P(E) \le 1$	(D)	$0 < P(E) \le 1$
51.	Number of circles pas	ssing t	through two given	point	s is		
	(A) one	(B)	two	(C)	finite	(D)	infinite
52.	Which of the followin	g canr	not be the probabi	lity of	an event?		
	(A) 1	(B)	36	(C)	$\frac{25}{24}$	(D)	0.99
53.	PAQ and XBY are str quadrilateral which i	-	lines, then bisecte	ors of	∠PAB, ∠XBA, ∠B	AQ aı	nd $\angle ABY$ will form a
	(A) rhombus	(B)	parallelogram	(C)	cyclic	(D)	rectangle
54.	Point of concurrence	of alti	tudes of a triangle	e is ca	lled		
	(A) orthocentre	(B)	incentre	(C)	circumcentre	(D)	centroid
55.	A biqudratic polynom	nial ca	n have maximum	L	zeroes.		
	(A) two	(B)	three	(C)	four	(D)	six
56 .	Sum of all the exterio	or ang	les of a triangle is	8			
	(A) 180°	(B)	2(180°)	(C)	$\frac{1}{2}$ (180°)	(D)	3(180°)
57.	The value of $(x - y)^3 + $	- (y – z	$(z^{3} + (z - x)^{3})$ is				
	(A) xyz	(B)	3xyz	(C)	(x - y) (y - z) (z - y)	<i>x</i>) (D)	3(x-y)(y-z)(z-x)
58.	If x^{51} + 51 is divided 1	by (<i>x</i> +	1), the remainder	r is			
	(A) O	(B)	102	(C)	50	(D)	52
59 .	The percentage incre	ease in	n the area of a tria	angle,	if its each side is	doub	oled is
	(A) 200%	(B)	300%	(C)	400%	(D)	500%
60.	Abscissa of a point ir	1 Carte	esian plane repres	sents p	perpendicular dis	tance	of the point from
	(A) origin	(B)	x-axis	(C)	y-axis	(D)	none of these
61.	The graph of $y = m$, w	vhere	<i>m</i> is a constant, is	s a line	e parallel to		
	(A) x-axis		y-axis		both the axes	(D)	none of these
62.	The graph of the equ	. ,	•	. ,		. /	
	(A) (4, 0)		(6, 0)		(0, 4)	(D)	(0, 6)
	() (., -)	(22)	(3, 5)	(0)	(-, .)	(2)	(-, -, -,

попро охоон							
63.	The equation $2x + 5y$	= 7 h	as a unique solutio	n if .	x and y are		
	(A) natural number			(B)	positive real num	ıber	
	(C) real number			(D)	rational number		
64.	Two adjacent sides of sides is 12 cm, then t	-	-			ance	between the longer
	(A) 18 cm	(B)	16 cm	(C)	9 cm	(D)	None of these
65 .	The length of a chord centre is	in a c	ircle of diameter 10) cm	is 6 cm. The distar	nce o	f the chord from the
	(A) 5 cm	(B)	3 cm	(C)	8 cm	(D)	4 cm
66.	A die is thrown once.	Proba	ability of getting a r	umt	er which is divisib	le by	2 or 3 is
	0		1				
	(A) $\frac{2}{3}$	(B)	$\frac{1}{3}$	(C)	1	(D)	0
67	If via an integral that	(10-1	1)4 (x 1)4 is shown	arra d	irrigible br		
07.	If x is an integer, then $(A) \in C$						10
	(A) 6	(B)		(C)	9	(D)	12
68.	How many $\frac{1}{6}$ are then	re is a	$3\frac{1}{3}$?				
	(A) 12	(B)	15	(C)	18	(D)	20
69 .	In ΔDEF and ΔPQR , if I	DE = 1	PQ, EF = PR and FD	=QF	R, then		
	(A) $\Delta DEF \cong \Delta RPQ$	(B)	$\Delta DEF \cong \Delta QRP$	(C)	$\Delta DEF \cong \Delta PQR$	(D)	$\Delta DEF \cong \Delta QPR$
70.	The total surface area	ofa	solid cube is 24 cm	n^2 . Th	ne volume of the cu	ıbe i	3
	(A) 4 cm^3	(B)	8 cm ³	(C)	24 cm ³	(D)	27 cm ³
71.	The degree of a zero p	olync	omial is				
	(A) 0	(B)	1	(C)	2	(D)	not defined
72.	The value of a for which	ch (x	+ a) is a factor of x^2	$^{3} + a x$	$x^2 - 3x + 16 + a$ is		
	(A) –4	(B)	4	(C)	-2	(D)	2
73.	The measure of each	interi	or angle of a regul	ar oo	ctagon is		
	(A) 120°	(B)	130°	(C)	135°	(D)	125°
74.	If each observation of	the d	lata is increased by	y 5, t	hen their mean		
	(A) remain the same			(B)	becomes 5 times	the	original mean.
	(C) is decreased by 5.			(D)	is increased by 5		5
75.			ow; mark the co-pi		-		
	(A) (2, 4)		(2, 110)		(2, 3)	(D)	(2, 6)
				()		()	
76.	If $\frac{a}{b} + \frac{b}{a} = -1$ then a^3	$-b^{3}$ i	s				
	(A) 1	(B)	-1	(C)	$\frac{1}{2}$	(D)	0
		, niin	bers is irrational?				
77.	Which of the following	Sinan	isere is intational.				
77.	(A) $\sqrt{\frac{4}{9}}$	_	$\frac{\sqrt{12}}{\sqrt{3}}$	(C)	$\sqrt{243}$	(D)	$\sqrt{81}$
77. 78.	(A) $\sqrt{\frac{4}{9}}$	(B)	$\frac{\sqrt{12}}{\sqrt{3}}$			(D)	$\sqrt{81}$

79.	Which of the following	g statements is not true	?					
	(A) If diagonals of a parallelogram are equal then its a rectangle.							
	(B) If diagonals of a parallelogram are equal, it is a square.							
	(C) If all four sides of a rectangle are equal, it is a square.							
		arallel sides are equal.	. 10 0					
80.		ervations if $m = 2k + 1$,	whe	re k is a positive in	teger			
00.	(A) $k + 1$	(B) $2k+1$		2k+3		<i>k</i> + 3		
		()	(0)	24 . 0	(D)	K · O		
81.	The value of expression	on $\frac{2^{310}-2^{301}}{2^{300}}$ is						
						010 1		
	(A) $2^9 - 1$	(B) $2^{10} - 1$	(C)	$2(2^9-1)$	(D)	$\frac{2^{10}-1}{2}$		
82.	Shown here are expre	essions given to Seema,	Ane	es. Asha and Tess	v wit	h their answers		
	Seema: $4 \times 1 + 8 \div 2 =$	_		nes: $6 + 4 \div 2 - 1 =$	-			
	Asha: $9 + 3 \times 2 - 4 \div 2$		Tessy: $27 \div 3 - 2 \times 3 = 21$					
	Who has got the corre		100					
	(A) Seema	(B) Anees	(C)	Aaha	(D)	Tessy		
83.	. ,	angles can not be cons	. ,		. ,	5		
00.	(A) 35.5°	(B) 40°	(C)	22.5°		None of these		
84		age of (2, –3) along <i>y</i> -ax	. ,	22.0	(D)	None of these		
04.	(A) (2, 3)	(B) (-3, 2)		(-2, -3)	(D)	(-2, 3)		
85.	Degree of a non-zero c		(0)	(2, 0)	(D)	(2,3)		
00.	(A) 1	(B) 0	(C)	2	(D)	None of these		
96	. ,			4	(D)	None of these		
86.		ue for all parallelogram	.87					
	(A) The diagonals are	0	daa					
	. , _	oduct of two adjacent si	ues.					
	(C) The opposite angle	-	a + 1a a .	_				
07		perpendicular to each						
87.		+ x + y = 63. Find the va				N		
00	(A) 8	(B) 7	(C)		. ,	None of these		
88.	biagonals of a parallel	logram ABCD intersect a	at O.	If $\angle BOC = 90^\circ$ and	ZBD	$C = 50^\circ$, then $\angle OAB$		
	(A) 90°	(B) 50°	(C)	40°	(D)	10°		
89.		g angles (in degree) can	. ,		. ,			
02.	compass?		101 0			licip of a fulcif and a		
	1	1		1		1		
	(A) $7\frac{1}{2}$	(B) $22\frac{1}{2}$	(C)	$30\frac{1}{2}$	(D)	$37\frac{1}{2}$		
90.	On factorizing $-x^2 + 5x^2$	x−6, we get						
	(A) $(x-2)(x-3)$	(B) $(2 + x)(3 - x)$	(C)	(2 - x) (3 - x)	(D)	-(2-x)(3-x)		
		$\mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}$	·×	·×				

THIS PAGE IS LEFT INTERNIONALLY BLANK.